Flight Plastic Plant

Figure 1 PET bottles inline for recycling at the Flight Plastics plant. Credit: Flight Plastics

In 2017, Flight Plastics established the first closed-loop mechanical recycling system in Aotearoa New Zealand for PET (#1), producing clear recycled PET (rPET) containers that, due to food hygiene standards, include a thin layer of virgin PET as the lining. The rPET containers produced by Flight Plastics are themselves recyclable several times via the same recycle loop. Plastic drink bottles are the main use of PET, and consequently make up the main volume of post-consumer PET recycled material collected and sorted in Aotearoa New Zealand. Flight uses this material to produce food-grade rPET trays and containers, which directly reduces the volume of virgin PET previously imported for this purpose. The year Flight Plastics established onshore processing for PET, more than 17,500 tonnes of virgin PET was imported into Aotearoa
New Zealand, with roughly 5,000 tonnes of clear PET collected for recycling. Flight’s start-up year processed limited volume during plant commissioning and trials, but the following year the amount of virgin resin imports had decreased by roughly 1,600 tonnes. This was the first-time virgin PET imports had fallen for more than a decade, and demonstrates the clear and immediate impact of onshore waste plastics recycling and reuse. Flight expects to process close to 5,000 tonnes of rPET in 2020 and a similar volume of virgin PET import reduction will occur accordingly (subject to overall market demand).

The Flight Plastics plant is now recycling almost all of the clear post-consumer PET currently collected and available in the market (some is still exported) and has spare capacity to recycle at least 50% more before further capacity is required. As a result, it can be said that Aotearoa New Zealand now has infrastructure to deal with all of the PET being recycled currently, and has the capacity to deal with a growing volume of PET as rates of recycling increase as expected with the implementation of a container deposit scheme (CDS), and as businesses shift away from problematic plastics such as PVC (#3) and PS (#6) to this more sustainable plastic.

In future, recycling methods for this material may need to be able to generate bottles. New infrastructure is being considered for Flight’s plant to achieve this, but in the immediate term all of the available material is being fully utilised in a genuine circular economy loop for containers. PACT Group in Auckland are also establishing PET reprocessing capabilities and will convert 10,000 tonnes of PET a year into food packaging, including meat and bakery trays, but will supplement with imported rPET material pending availability of local recycled PET.

Lessons from Flight Plastics’ experience can guide efforts to establish onshore solutions for HDPE (#2) and PP (#5). A key challenge faced while establishing onshore reprocessing capabilities is the low recycling rate, which limits the amount of recycling that can be undertaken. For example, less than 30% of imported PET resin is recycled – meaning that a large percentage of this valuable, recyclable plastic is still ending up in the landfill or the environment. In order to make reprocessing economic, the design, disposal, collection and sorting methods need to be improved to increase recycling rates. Because the investment returns in recycling are generally very low, companies making large and long-term recycling investments face considerable risk in a volatile and competitive market. This is heightened by the local market having to compete against imported recycled resin. Regulation to incentivise the use of recycled content would strengthen the markets for these materials. If further incentives exist for local recycled content, it would do more to strengthen the local recycling industry. Lastly, the reprocessing infrastructure is only part of the set-up cost. It is important to factor in extra costs up and downstream of the recycling process when establishing and funding new infrastructure to develop onshore closed-loop solutions for HDPE (#2) and PP (#5).

Explore more case studies from Rethinking Plastics

Sustainability through connection, learning and action

With a kaupapa of creating a healthy, peaceful, more sustainable world, Toimata Foundation supports inter-generational learning and action by running two main programmes in schools and communities:…

Reducing the carbon footprint of plastics by using recycled plastic

In a study of the carbon footprint of projected global plastic use between 2015 and 2050, Zheng and Suh modelled a theoretical situation of 100% recycling of plastic in 2050, and found it had a 25%…

A reusable system to replace single-use cups

Globelet offers a reusable cup system for festivals and other events. The cups are made from recycled polypropylene (#5) and manufactured onshore. Globelet provides the following statistics on their…

How big is the plastic clothing problem for Aotearoa New Zealand?

Some plastic articles of clothing are captured in the ‘Plastics and articles thereof’ harmonised trade codes in import data from Statistics NZ, but this does not account for all synthetic fibres im…

A business enabling people to rethink their use of plastic

Ecostore is an exemplar of how a business can take transformative action to rethink how we use plastics and inspire system-wide change. To enable people to reduce their use of non-renewable single-…

New Zealand Post’s quest for an alternative to plastic

The driver: New Zealand Post wants a more sustainable, environmentally friendly alternative to their existing plastic mailers (e.g. courier bags, pre-paid postage bags). New Zealand Post has also…

Para Kore – helping people reduce their waste

Para Kore is a Māori organisation that provides mentoring and support for marae, kōhanga reo, kura, community organisations, iwi, tertiary, commercial sector, events and Māori communities to reduce…

Plastic Bag Free Raglan, Pēke Kirihou Kore Whāingaroa

In October 2018, Whāingaroa Raglan won the Keep New Zealand Beautiful ‘Community Environmental Initiative Award’. The kōrero behind the Award was a story of what happened when a whole community wor…

Controlled plastic decomposition

Plastics are made by joining monomers together to form long flexible chains in a process known as polymerisation. The strength of the bonds formed between monomers is what makes the plastics persis…

Recyclable shoes

As part of its recent pledge to use only recycled plastics by 2024, Adidas revealed a new sneaker made from 100% recyclable materials. Driven by a connection to environmental organisation Parley for…